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Abstract: Due to the mismatch in the coefficients of thermal expansion of slicon chip and 

the surrounding plc~vtic encapsulation materials, the induced thermal stress is the main ca~e 

for die and encapsulant rupture. The corner geometry is simplified as the semi-infinite 

wedge. Then the two-dimensional thermal stress distribution around the corner was obtained 

explicitly. Based on the stress calculation, the strain energy density factor criterion is used 

to evaluate the strength of the structure, which can not only give the critical condition for 

the stresses, but also determine the direction of fracture initiation around the corner. 
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Introduction 

Electronic packages are complex composite structure l They have myriad comers and 

interfaces that can act as potential failure sites during field operation. At present time, plastic 

encapsulated integrated circuits (ICs) are widely used in engineering. A plastic encapsulated IC 

package consists of a silicon die, die attachment, passivation, wire interconnects, a lead frame, 

and plastic molding compound. Thermal excursion during package qualification from thermal 

cycling/thermal shock, or power cycling during normal operation can set up thermomechanical 

stresses due to the thermal expansion coefficient mismatch of different materials. Such stresses can 

be sufficient severe to induce microcracking around the corners, and lead ultimately to device 

failure (Bar-Cohen, 1992; Nguyen, et a l . ,  1995; Holalkere, et a l . ,  1997; Lau and Pao, 

1997) N-4] 

To calculate the stress field and evaluate reliability behavior of the electronic packages, the 

finite element method has been widely used in the electronic industry and has shown some success 

(Pendse and Demmin, 1990; Nguyen, et a I . ,  1993; Shook, et a l . ,  1997; Zhu, et a l . ,  
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1997, Clark, et a l . ,  1993) Es- 9] . Since the thermal stress is singular near the sharp corner of the 

electronic packages, the stress field obtained by the finite element analysis around the comer is 

mesh-dependent (Hu,  1995) [I~ . Thus the ordinary analysis of the finite element method is quite 

unreliable for the stress concentration calculation at the comer.  Another key unsolved issue is 

strength evaluation method and criterion. Since the stress is singular near the comers,  all the 

failure criterions based on maximum stress, etc. are not suitable for strength evaluation. Some 

other strength evaluation methods are based on the singularity parameter (Hattori ,  et a l . ,  

1989) ~ul , or average stress in a finite local zone were proposed, but have not been widely 

adopted in practical design evaluation. 

In this paper, it is found that under some reasonable assumptions, the comer geometry can 

be simplified as the semi-infinite wedge. Then the two-dimensional thermal stress distribution 

around the corner can be obtained explicitly. Based on the stress calculation, the strain energy 

density factor criterion is used to evaluate the strength of the structure that can not only give the 

critical condition for the stresses, but also determine the direction of  fracture initiation around the 

comer. 

1 Analyt ica l  So lut ions  of Thermal  Stresses  A r o u n d  a Corner 

As we have said, there are various comers in electronic packages. In this paper, we 

consider the die packaged in epoxy molding compound as an illustration (Fig.  1 ) .  

'- .............................................. Since the silicen die has a much smaller thermal expansion 

! coefficient than the surrounding epoxy molding compound, the 

i .................... thermal stresses will be produced along the interface during the 

! cooling or heating process. If  we are only interested in the thermal 

i .................... stress dislribution around one comer,  we can use the following 

wedge model (Fig.  2) to derive it explicitly. For square die, the 
EMC 

t..._, ...................... normal thermal stress along the interface is assumed to be P0 for 

0 ~< r ~< a ,  where a is the size of  the die, and the stress P0 can 
Fig. 1 Die encapsulated in 

be determined through the continuity condition of the displacement 
epoxy molding 
compound along the interface. The epoxy molding compound is assumed to 

extend infinitely. Thus under the action of the stress P0, the stress 

distribution both in the epoxy molding corntmund and inside the die can be solved separately. In 

this paper, we only show the solution process in the epoxy molding compound, since it is 

comparatively easy to obtain the analytical solution for the square die. In polar coordinates, 

stresses are connected by the following equilibrium equations: 

3 (rar ) 3 r~o 9 ( rr~ ) 3 tr 0 
a r  ~0 + a 0  - 0 ,  a-----S--- + r ~  + TO- = 0 .  ( 1 )  

Consider the isotropic epoxy molding compound. Then, stresses are connected with 

corresponding strain by the Hooke ' s  law, i . e . ,  

1 

2(1 + v) 

1 

(2) 
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which is the relation for plane stress problem, 

where E and v are Young 's  modulus and 

Poisson's ratio of the material. The strains, in 

turn, are expressed through displacements by 

geometric equations 

�9 0 U r 

~ r  - O r  " 

1 3 uo u,  
~o - + - - ,  ( 3 )  r 30 r 

1 OUr 811"0 Ur 
~rO - �9 r aO + a r  r 

where u, and u0 are the components of the 

displacements in the radial and tangential 

directions, respectively. 

a 

Fig.2 A infinite wedge under 
the action of P0 

Eliminating displacements we can write the following compatibility equation: 

3 ze0 1 3"-er 2 8e0 1 aer [ 1 82 ae,e/  
3r  2 + r2 302 + - - 2~ e,o 1 (4) 

r a r  r Or r a r a O  + --r'- - g O }  " 

Equations ( 1 ) ,  ( 2 ) ,  (3)  and (4) form a complete set of equations for the plane problem of the 

theory of elasticity in polar coordinates. 

Introducing the stress function, ~ ( r ,  0) in accordance with the following relations : 

10_~ 1 0 2  a 2 a ( 1  ~ )  
~ r - -  + - -  O~ ~e = 7' r ~  = -  - -  ( S )  

r 3 r  r 2 a ' O r  2 '  ffTr r 0 0  " 

We obtain for this stress function the biharmonic equation 

( 3 2  1 3 1 a z ) ( 3 ~  1 ~q> 1 9 )  
a r  2 + - -  + + - -  + - -  = 0 .  ( 6 )  r gTr 7 - 5 - ~  a t -  r a r  r 2 

To reflect the mismatch of the thermal expansion between the die and the surrounding epoxy 

molding compound, on f'mite segments of the contact lateral faces of the wedge 0 = _+ 3 ~r/4, 0 ~< 

r <~ a ,  it is subjected to a normal loading that is symmetric with respect to the axis of the wedge 
for square die, and the tangential stress can be set to zero on the faces of the wedge. Thus one 

has the boundary conditions as follows: 

{ ) oo(r, ' 
r ,  ~r = - 4-1r/ - [0  others; (7) 

3 
[ r , 0 ( r , 3 a  ") r , 0 ( r , - - ~ - r r ) =  0 0~< r < 

To get a solution of the problem we apply the Mellin integral transformation in the variable r .  As 

is well-known, the Mellin transform of a function f ( r )  and its inverse are given by the relations 

;o f ( s )  f ( r )  d - l d r ,  f ( r )  1 re+i| = = ~ /  f ( s ) r  ds .  (8) 
~ 7 r l J c _ i e ~  

Applying the Mellin transformation to the biharmonic equation ( 6 ) ,  we get for the 
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transform, ~ ( s ,  0 ) ,  of the stress function the ordinary differential equation 

[,- l[a ] + s 2 d-~ + (s + 2) 2 ~ ( s , 0 )  = 0. (9) 

The stress field sought is symmetric with respect to the axis 0 = 0, thus the stress function must 

be also so. The general symmetric solution of Eq. (9) has the form 

~ ( s , 0 )  = C(s)cos(sO) +.D(s)cos(s  + 2 ) 0 .  (10) 

Substituting Eq. (5) into Eq. (7) gives the boundary condition for the stresss function 

32~(r ,  • 3~r/4) 1 [ 1 3 ~ ( r ,  + 37r/4)] 
- 3r 2 - = P0, ffTr ~- 30 = 0. (11) 

Multiplying Eq. ( 11 ) by r 2 , and applying the Mellin transformation to these conditions we get the 

boundary conditions for the function ~ ( s ,  0) as follows : 

( 3 ) , ( s )  d ~ ( s  •  
~> s ,  + ~ - , r  _ ' = 0 ,  ( 1 2 )  

- s ( s  + 1)' d0 

where 

p ( s )  = f2por*+ldr. (13) 

Substituting solution (10) into the boundary condition (12) gives the constants C ( s )  and D ( s )  

as follows : 

I (s + 2 ) s in ( ( s  + 2)(3~r/4)) 
C(s)  s(s  + 1)Is  + 1 - s in((3~r/2)(s  + 1))]  p ( s ) '  

sin(3 ~rs/4) (14) 

LO(.,) (s + 1)[s  + 1 - s in( (3rr /2) (s  + 1) ) ]  f i ( s ) "  

Substituting the results into the inversion formula we obtain the solution for the stress 

function in the tbrm 

lie+,- 
9 ( r , O )  = 2~iJc-i| s(s + 1)Is  + 1 -  s in((3rc/2)(s  + 1) ) ]  x 

[ssin(3zrsl4) eos((s  + 2 )0 )  - 

(s + 2)s in( (3zr /4) (s  + 2) )cos( sO) ]ds. (15) 

Substituting the stress function (15) into Eq. (5) yields the components of the stess tensor in the 

form 

9 2 1_ fe+i . . . . .  2 ~ ( r , O )  = ~(r,a) p ( , , )  r 
Or ~ - 2~iJ~_i| s + 1 - s in((37r/2)(s  + 1)) x 

[ssin(37rs/4) cos((s  + 2 )0 )  - (s + 2)s in((3~r /4)(s  + 2 ) ) cos ( sO) ]ds ,  (16) 

a~(r,O) - 1 aq~(r,O) 1 Ozq~(r,O) 1 I ~+~| /~ ( s ) r  -*-2 
r Or +---4- r- 002 2~ioc_i~, s + 1 - s i n ( ( 3 r / 2 ) ( s  + 1)) x 

[ ( s  + 2)s in( (3zr /4) (s  + 2))cos(sO) - (s + 4)sin(3a-s/4)eos((s  + 2 ) O ) ] d s ,  

(17) 
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1 [ 1 O ~ ( r , 0 ) ]  1 [c+i| ~ ( s ) r - ' - Z ( s  + 2) 
r ~ ~  = - ~rr r 00 - -  = b~iJc_i|  s + 1 -  s i n ( ( 3 ~ r / 2 ) ( s  + 1 ) )  x 

[ sin( (3 rr/4) ( s + 2)  ) s in ( sO)  - s in(3~rs /4)s in(  ( s + 2)  0)  ] d s .  (18)  

It is evident that the integrands in Eqs.  ( 1 6 ) ,  (17)  and (18)  are meromorphic functions of  

the complex variable s whose poles correspond to the roots of  the following function: 

s + 1 - s i n ( ( 3 z r / 2 ) ( s  + 1 ) )  = 0 .  (19)  

It can be easily found that the approximate roots of  Eq.  (19)  are as follows : 

sl = -  1 . 5 4 4 4 8 ,  s 2 = -  I ,  s3 = - 0 . 4 5 5 5 2 .  (20)  

The solutions of  Eq.  (19)  are shown in F i g . 3 .  

To calculate the integrals in Eqs.  ( 1 6 ) ,  (17)  3 / , -  

and ( 1 8 ) ,  we must close the contour of  y = ~ + l / "  
2 

integration by adding it to the line Re ( s )  = c a 
r . 3 

semicircle of  large radius on the left. According to r i . . . .  

�9 e si u O 

expressed in terms of  the sum of  the residues at 0 

the poles contained in the contour obtained since - t  . . . . . . . . .  

the integrals along the semicircle are zero.  - - t  0 t z 

Furthermore,  to get a unique solution one imposes 

the additional regularity requirement of  Fig. 3 Graphical solution of Eq. (19) 

boundedness of  the resulting force on any radial cut of  the wedge:  

< |  

y v ~ 0 ( r , 0 ) d r  < ~ .  
0 

(21)  

Therefore Re ( s )  = c can be chosen so that the closed contour only contains the pole 

st = 1 .544 48.  The solutions for the stress fields become 

3 
( s l  + 2 ) s i n ( ~ - z r ( s l  + 2 ) ) e o s ( s l 0 )  1 ,  

a r ( r , O )  = / ~ ( s l ) r  - '~-2 ( s l  + 2 ) s i n  ~ -Tr ( s l  + 2 )  c o s ( s 1 0 )  - 
(22) 

( s  I + 4 ) s in  -~-Irs 1 c o s ( ( s  1 + 

r , e ( r , O )  = p ( s l ) r - ' ~ - 2 ( s l  + 2) • 

3 2)0)] 3 (,1 2 ) ) s i n ( s l O )  - s i n ( - g , r , , ) s i n ( ( s l  + . [ sin(-~- + 

From Eq.  ( 2 2 ) ,  it can be found that the stress field at the comer  is singular with singularity 

exponent , l  = - .% - 2 = - 0 . 4 5 5 5 2 .  
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The components of the displacements in the radial and tangential directions can be derived 

from Eqs. (2)  and (3)  as follows : 

I f  fi(Sl) r-s'-I 
Ur = erdr  = ~ (a~ - ) ' a o ) d r  - E ( s  I + 1) • 

[ ( 4 +  sl + 7Sl)sin(  3 ~ - r c s l / c o s ( ( s  I + 2 ) 0 )  - 

where u 0 ( 0 )  is only a function of 0. 

f f uo = ( reo  - u r ) d O  = a 0 - 7 a ~ ) r d O -  u ,  dO = 

f i (s l ) - " -m[(s,  + "Ys, +47 4 +  s, + 'Ysa ) 
E S 1 + 2 - (S 1 + 1)(Sl  + 2) • 

( 3 )  ( 1 +  7 ) ( s l  + 2 ) . (  1 
sin ~s I s i n ( ( s  1 + 2 ) 0 )  + 

Sl $1 + 1 
1) x 

(24) 

from which 

one obtains 

1 3 u o ( O )  3 v ( r )  + 
. r •  i v ( r )  = 0 (26) 

r 3 0  + 3~;---- r J  r ' 

v ( r )  = F r ,  u o ( O )  = Hsin0 + Kcos0 ,  (27) 

where F ,  H ,  and K are constants to be determined from the conditions of  constraint. Since the 

axis 0 = 0 is symmetric axis, one obtains 

3 u o 
uo = O, Or - O, for 0 = 0 (28) 

from which, it follows that F = H = 0. For silicon chip encapsulated in IC plastic packages, one 

can assume that the displacement of EMC is restricted at the outside boundary, therefore 

u r = 0 for 0 = 0, r = R ,  (29) 

where R is the radial distance from the die comer to the outside corner of  EMC. Thus, the 

constant K can be determined as follows: 

= - E ( s  1 + 1) (4 + Sm + YSm)sin ~-rrsl - 

where v ( r )  is a only function of r .  

To determine the functions u0 ( 0 ) ,  v ( r ) ,  substituting the displacement components into the 

shear strain expression of Eq. ( 3 ) ,  

2(1 + ) ' )  1 3 u r  3 u o  Uo 
e~0 - E a,e - + , (25) r 30 3r  r 
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(1 + ) t)(S 1 + 2)s in(  3~-rt(s a + 2 ) ) ] .  (30) 

As we said have before, the acting force P0 on the face of  the wedge is created by the 

misfitting between the thermal expansion coefficient between the die and the epoxy molding 

compound. Since the elastic modulus of the die is much higher than that of the epoxy molding 

compound, the elastic displacement in the die can be considered zero. Therefore the displacement 

of EMC in the tangential direction along 0 = _+ 37r/4 can be written as 

( 3 ) 1  
u o ._- ~Tt  = - f ( a i  - a z ) A T a ,  (31) 

where a l ,  a2 are thermal expansion coefficients of the die and EMC, respectively, A T  is the 

temperature difference, and a is the size of the die. From Eq. ( 2 4 ) ,  it is found that the 

displacement in the tangential direction is not constant even if the applied force on the face is 

constant. To determine the interacting force P0 between the die and EMC, we simply take the 

average displacement in the tangential direction for 0 ~< r ~< a as the thermal misfitfing 

displacement, i . e . ,  Eq. (31 ) .  Therefore, one derives an equation to determine p0 ,  

l f "  1 a o uodr = --~(a~ - ao)ATa._ (32) 

Through Eq. ( 3 2 ) ,  one can derive tile acting thermal stress Po between the die and EMC as 

follows : 

1 {  - 1  [ S l + T S a + 4 ) "  4 + s l + T s ,  
P0 = s1(s~ + 2) sa + 2 - ( s l  + 1 ) ( s l  + 2) + 

S 1 \ S l  ~ + - -  

t ( 1  + 7 ) ( s  1 + 2)s in  re(s, + 2) / - (sl 1)(Sl  + 

+ + E ( a l  - a ,_)AT.  (33) 

Substituting the values s 1 = 1.544 48, 7 = 0 .34  into Er (33 ) ,  one obtains 

P0 ~ ~- 2 . 8 2 0 2  + 4.155 x E ( a l  - a z ) A T .  (34) 

One should bear in mind that R is the distance from the die comer to the point where the 

radial displacement is zero along the axis 0 = 0. As a limiting case, if we fix the point where 

r = R = 0,  Eq . (34 )  gives the maximum thermal stress along the face, i : e . ,  

P0 ~ 0.177 3 E ( a l  - a ~ ) A T .  (35) 

And if R --~ oo, the interacting stress approaches zero. That is true since for the wedge problem 

we consider, it can satisfy the displacement requirement through rigid movement.  For the 

electronic packages we considered, due to the symmetric requirement of  the die and surrounding 

EMC, the perpendicular displacements along the axis X ,  and Y that pass the center of  the die are 

zero. Thus one should put a constraint on the displacement. 
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2 Strength Evaluation 

Since the stresses around the sharp corner is singular with r -~ 5._., we cannot use the 

criterion based on the maximum stress or strain to evaluate the strength of the structure around the 

corner. And since there is no crack there, we cannot also use the fracture mechanics to determine 

when the corner will break. In this paper, we try to adapt the strain energy density criterion 

proposed by Sih (1973a, b ) ,  (1974) [12-14] in fracture mechanics to evaluate the strength of the 

structure. Using the SED criterion, we can not only determine when the material will fail, but 

also determine the direction of cracking around the corner. The strain energy density function can 

be expressed in the form 

dW S 
dV - r 0"911 1 , (36) 

where W is the strain energy, S is the strain energy density factor. There are three basic 

hypotheses of the strain energy density criterion (Gdoutos, 1990) Its] : 

H y p o t h e s i s  1 The location of fracture coincides with the location of minimum strain 

energy density, and yielding with maximum strain energy density; 

H y p o t h e s i s  2 Failure by fracture or yielding occurs when (dW/dV)min or (dW/dV)m= 

reach their respective critical values; 

H y p o t h e s i s  3 The amount of incremental growth r l ,  r._, " " ,  r j ,  "'", r, is governed by 

{ d W~ $1 $2 S, S. 
(37) 

[ ] ~ c  - r l  - r2 - - r i - - r e '  

there is unstable fracture or yielding when the critical ligament size rc is reached. 

Hypothesis 1 means that the relative local minimum of d W/d V corresponds to large volume 

change and identified with the region dominated by macrodilatation leading to fracture, while the 

relative local maximum of d W/d V corresponds to large shape change and identified with the 

region dominated by macrodistortion leading to yielding. Therefore one should determine whether 

to use the minimum of d W/d V, or the maximum of d W/d V according to the failure mechanism. 

Hypothesis 3 is for damage propagation problem. Using the stress field obtained above, 

Eq. (22 ) ,  we can derive the strain energy density factor S as follows: 

~ G [ k +  1, )2 2( r~o)] S = r ~ [ ~ t , a  r + a O - a r a  e - = 

(s  I + 2)._G (k + l ) s in  2 ~-TrSl eos- ( (Sl  + - 

L [  ($1 + 2  2)s in(  3 ~ ( $ 1  + 2 ) )  cOs(S10) - 

( S l +  4 ) s i n ( 3 ~ r s l ) e o s ( ( s l  + 2 ) O ) ] [ s l s i n (  3 r r s l ) e o s ( ( s l  + 2 ) 0 ) -  

2} 
+ 2 ) 0 ) ]  , (38) 
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where G is the shear modulus such that G = E / [ 2 ( 1  + 7 ) ] ,  k = 3 - 47  for plane strain, and 

k = (3 - 9") / ( 1 ~- u  for generalized plane stress. 

The first hypothesis of SED criterion can be expressed mathematically by the relations 

3S 32 S 
90  = 0, 002 > 0. (39) 

The cracking direction at the comer can be determined by Eq. (39) as 0c = 0. 

Crack initiation occurs when 

S(Oc) = So, (40) 

where S, is the critical value of the strain energy density factor which is a material constant. 

Therefore one obtains 

p0 a'-(s'~+2) 1 [ ( s l  + 2 ) s i n ( 3 r r ( S a  2 ) ) -  

3 2)s in(  3~Z(Sl 2 ) ) 1 } =  S~. 

(41) 
From Eq. ( 4 1 ) ,  one can easily find that when increasing the size of the die, the critical thermal 

load which induces the failure of the comer is decreasing, i . e . ,  under the same operation 

condition, the larger the die, the easier for the crack initiation around the comer.  

3 Concluding Remarks  

Electronic packages are complex composite structure. They have myriad comers and 

interfaces which can act as potential failure sites daring field operation. In this paper, it is found 

that under some reasonable assumptions, the comer geometry can be simplified as the semi- 

infinite wedge. Then the two-dimensional thermal stress distribution around the comer can be 

obtained explicitly. Although the paper focus on the special symmetric structure, i . e . ,  a square 

die encapsulated in epoxy molding compound, the analysis can be extended to more complex 

structures with various corners. It is found that the stresses around the comer have r -~ 5a 

singularity for such case. The interacting thermal stress between the die and EMC is also obtained 

based on the continuity condition of the displacement. Based on the stress calculation, the strain 

energy density factor criterion is used to evaluate the strength of the structure which can not only 

give the critical condition for the stresses, but also determine the direction of fracture initiation 

around the corner. It is found that when increasing the size of the die, the critical thermal load 

which induces the failure of the corner is decreasing in proportion to a-~ 52 
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